A Hierarchical Framework for Cross-Domain MapReduce Execution

Yuan Luo¹, Zhenhua Guo¹, Yiming Sun¹,

Beth Plale¹, Judy Qiu¹, Wilfred W. Li ²

¹ School of Informatics and Computing, Indiana University

² San Diego Supercomputer Center, University of California, San Diego

ECMLS Workshop of HPDC 2011, San Jose, CA, June 8th 2011

Background

- The MapReduce programming model provides an easy way to execute embarrassingly parallel applications.
- Many data-intensive life science applications fit this programming model and benefit from the scalability that can be delivered using this model.

A MapReduce Application from Life Science: AutoDock Based Virtual Screening

AutoDock:

- a suite of automated docking tools for predicting the bound conformations of flexible ligands to macromolecular targets.
- AutoDock based Virtual Screening:
 - Ligand and receptor preparation, etc.
 - A large number of docking processes from multiple targeted ligands
 - Docking processes are data independent

Image source: NBCR

Challenges

- Life Science Applications typically contains large dataset and/or large computation.
- Only small clusters are available for mid-scale scientists.
- Running MapReduce over a collection of clusters is hard
 - Internal nodes of a cluster is not accessible from outside

Solutions

- Allocating a large Virtual Cluster
 - Pure Cloud Solution
- Coordinating multiple physical/virtual clusters.
 - Physical clusters
 - Physical + Virtual clusters
 - Virtual clusters

Hierarchical MapReduce

Gather computation resources from multiple clusters and run MapReduce jobs across them.

Features

- Map-Reduce-GlobalReduce Programming Model
- Focus on Map-Only and Map-Mostly Jobs

map-only, map-mostly, shuffle-mostly, and reduce-mostly *

- Scheduling Policies:
 - Computing Capacity Aware
 - Data Locality Aware (development in progress)

^{*} Kavulya, S., Tan, J., Gandhi, R., and Narasimhan, P. 2010. An Analysis of Traces from a Production MapReduce Cluster. In Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGRID '10). IEEE Computer Society, Washington, DC, USA, 94-103.

Programming Model

Function Name	Input	Output	
Мар	(k^i, v^i)	(k^m, v^m)	
Reduce	$(k^m, [v_1^m, \dots, v_n^m])$	(k^r, v^r)	
Global Reduce	$(k^r, [v_1^r, \dots, v_n^r])$	(k^o, v^o)	

Procedures

- 1) A job is submitted into the system.
- 2) global controller to local clusters.
- 3) Intermediate pairs are passed to the Reduce tasks.
- 1) Local reduce outputs (including new key/value pairs) are send back to the global controller.
- 5) The Global Reduce task takes key/value pairs from local Reducers, performs the computation, and produces the output.

Computing Capacity Aware Scheduling

- $MaxMapper_i = \rho_i \times NumCore_i$
 - ρ_i is defined as maximum numbers of mappers per core.
- $\gamma_i = MaxMapper_i MapperRun_i$,
 - γ_i is the number of available Mappers on $Cluster_i$
- $Weight_i = \frac{\gamma_i \times \theta_i}{\sum_{i=1}^N \gamma_i \times \theta_i}$
 - θ_i is the computing power of each cluster;
- $JobMap_{x,i} = Weight_i \times JobMap_x$
 - $JobMap_{x,i}$ is the number of Map tasks to be scheduled to $Cluster_i$ for job x,

MapReduce to run multiple AutoDock instances

- 1) Map: AutoDock binary executable + Python script summarize_result4.py to output the lowest energy result using a constant intermediate key.
- **2) Reduce**: Sort the values values corresponding to the constant intermediate key by the energy from low to high, and outputs the results.
- *Global Reduce*: Sorts and combines local clusters outputs into a single file by the energy from low to high.

AutoDock MapReduce input fields and descriptions

Field	Description		
ligand_name	Name of the ligand		
autodock_exe	Path to AutoDock executable		
input_files	Input files of AutoDock		
output_dir	Output directory of AutoDock		
autodock_parameters	AutoDock parameters		
summarize_exe	Path to summarize script		
summarize_parameters	Summarize script parameters		

Experiment Setup

Cluster Nodes Specifications.

- FG: FutureGrid, IU: Indiana University

Cluster	CPU	Cache size	# of Core	Memory
Hotel (FG)	Intel Xeon 2.93GHz	8192KB	8	24GB
Alamo (FG)	Intel Xeon 2.67GHz	8192KB	8	12GB
Quarry (IU)	Intel Xeon 2.33GHz	6144KB	8	16GB

- PBS allocated 21 nodes per cluster
 - 1 namenode, 20 datanode
- set $\rho_i = 1$ so that
 - $MaxMapper_i = \rho_i \times NumCore_i$
- AutoDock Version 4.2 on each cluster
- 6,000 ligands and 1 receptor.
- $qa \ num \ evals = 2,500,000$

Image Source: Indiana University

Image Source: FutureGrid

Evaluation

y-weighted dataset partition:

set $\theta_i = \mathcal{C}$, where C is a constant, $\gamma_1 = \gamma_2 = \gamma_3 = 160$ $Weight_i = 1/3$

**The average global reduce time taken after processing 6000 map tasks (ligand/receptor docking) is 16 seconds.

Data Movement cost can be ignored in comparison with the computation cost

Local cluster MapReduce execution time based on different number of map tasks.

$\gamma\theta$ -weighted dataset partition:

 $\theta_1=2.93$ (Hotel), $\;\theta_2=2.67$ (Alamo), $\;\theta_3=2$ (Quarry) $\;\gamma_1=\gamma_2=\gamma_3=160$ $Weight_1=0.3860$, $Weight_2=0.3505$, $Weight_3=0.2635$

Conclusion and Future Work

- A hierarchical MapReduce framework as a solution to run MapReduce over a collection of clusters.
- "Map-Reduce-Global Reduce" model.
- Computing Capacity Aware Scheduling
- AutoDock as an example.
- Performance Evaluation showed the workload are well balanced and the total makespan was kept in minimum.

- Performance Test for Large Dataset Applications.
 - Data transfer overhead
 - Bring Computation to Data
 - Share File System that uses local storage
 - Change θ_i in the current scheduling policy
- Replace ssh+scp glue
 - Meta-scheduler?
 - Better data movement solution
 - gridftp?
 - Distributed file system?

Acknowledgements

- This work funded in part by
 - Pervasive Technology Institute of Indiana University
 - Microsoft
- Special thanks to Dr. Geoffrey Fox for providing early access to FutureGrid.

Thanks! Questions?

Yuan Luo, http://www.yuanluo.net
Indiana University School of Informatics and Computing

http://www.soic.indiana.edu

Indiana University Data to Insight Center

http://pti.iu.edu/d2i

Backup Slides

