
A Hierarchical Framework for Cross-Domain  
MapReduce Execution 

Yuan Luo1, Zhenhua Guo1, Yiming Sun1, Beth Plale1, Judy Qiu1, Wilfred W. Li 2 
1 School of Informatics and Computing, Indiana University, Bloomington, IN, 47405 

2 San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, 92093 

{yuanluo, zhguo, yimsun, plale, xqiu}@indiana.edu, wilfred@sdsc.edu 
 
ABSTRACT 
The MapReduce programming model provides an easy way to 
execute pleasantly parallel applications. Many data-intensive life 
science applications fit this programming model and benefit from 
the scalability that can be delivered using this model.  One such 
application is AutoDock, which consists of a suite of automated 
tools for predicting the bound conformations of flexible ligands to 
macromolecular targets.  However, researchers also need 
sufficient computation and storage resources to fully enjoy the 
benefit of MapReduce.  For example, a typical AutoDock based 
virtual screening experiment usually consists of a very large 
number of docking processes from multiple ligands and is often 
time consuming to run on a single MapReduce cluster.  Although 
commercial clouds can provide virtually unlimited computation 
and storage resources on-demand, due to financial, security and 
possibly other concerns, many researchers still run experiments on 
a number of small clusters with limited number of nodes that 
cannot unleash the full power of MapReduce.  In this paper, we 
present a hierarchical MapReduce framework that gathers 
computation resources from different clusters and run MapReduce 
jobs across them.  The global controller in our framework splits 
the data set and dispatches them to multiple “local” MapReduce 
clusters, and balances the workload by assigning tasks in 
accordance to the capabilities of each cluster and of each node. 
The local results are then returned back to the global controller for 
global reduction. Our experimental evaluation using AutoDock 
over MapReduce shows that our load-balancing algorithm makes 
promising workload distribution across multiple clusters, and thus 
minimizes overall execution time span of the entire MapReduce 
execution. 

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: Distributed 
Systems – Distributed applications. 

General Terms: Design, Experimentation, Performance  

Keywords: AutoDock, Cloud, FutureGrid, Hierarchical 
MapReduce, Multi-Cluster 

1. INTRODUCTION 
Life science applications are often both compute intensive and 
data intensive. They consume large amount of CPU cycles while 
processing massive data sets that are either in large group of small 

files or naturally splittable. These kinds of applications ideally fit 
in the MapReduce [2] programming model. MapReduce differs 
from the traditional HPC model in that it does not distinguish 
computation nodes and storage nodes so each node is responsible 
for both computation and storage. Obvious advantages include 
better fault tolerance, scalability and data locality scheduling. The 
MapReduce model has been applied to life science applications by 
many researchers. Qiu et al. [15] describe their work to implement 
various clustering algorithm using MapReduce.  

AutoDock [13] is a suite of automated docking tools for 
predicting the bound conformations of flexible ligands to 
macromolecular targets. It is designed to predict how small 
molecules of substrates or drug candidates bind to a receptor of 
known 3D structure. Running AutoDock requires several pre-
docking steps, e.g., ligand and receptor preparation, and grid map 
calculations, before the actual docking process can take place. 
There are desktop GUI tools for processing the individual 
AutoDock steps, such as AutoDockTools (ADT) [13] and BDT 
[19], but they do not have the capability to efficiently process 
thousands to millions of docking processes. Ultimately, the goal 
of a docking experiment is to illustrate the docked result in the 
context of macromolecule, explaining the docking in terms of the 
overall energy landscape. Each AutoDock calculation results in a 
docking log file containing information about the best docked 
ligand conformation found from each of the docking runs 
specified in the docking parameter file (dpf). The results can then 
be summarized interactively using the desktop tools such as 
AutoDockTools or with a python script. A typical AutoDock 
based virtual screening consists of a large number of docking 
processes from multiple targeted ligands and would take a large 
amount of time to finish.  However, the docking processes are 
data independent, so if several CPU cores are available, these 
processes can be carried out in parallel to shorten the overall 
makespan of multiple AutoDock runs.  

Workflow based approaches can also be used to run multiple 
AutoDock instances; however, MapReduce runtime can automate 
data partitioning for parallel execution. Therefore our paper 
focuses on extending the MapReduce model for parallel execution 
of applications across multiple clusters.  

Cloud computing can provide scalable computational and storage 
resources as needed.  With the correct application model and 
implementation, clouds enable applications to scale out with 
relative ease.  Because of the “pleasantly parallel” nature of the 
MapReduce programming model, it has become a popular model 
for deploying and executing applications in a cloud, and running 
multiple AutoDock jobs certainly fits well for MapReduce. 
However, many researchers still shun away from clouds for 
different reasons.  For example, some researchers may not feel 
comfortable letting their data sit in shared storage space with 
users worldwide, while others may have large amounts of data 
and computation that would be financially too expensive to move 

 
 
 
 
 
 
 
 
 



into the cloud.  It is more typical for a researcher to have access to 
several research clusters hosted at his/her lab or institute. These 
clusters usually consist of only a few nodes, and the nodes in one 
cluster may be very different from those in another cluster in 
terms of various specifications including CPU frequency, number 
of cores, cache size, memory size, and storage capacity. 
Commonly a MapReduce framework is deployed in a single 
cluster to run jobs, but any such individual cluster does not 
provide enough resources to deliver significant performance gain. 
For example, at Indiana University we have access to IU Quarry, 
FutureGrid [5], and Teragrid [17] clusters but each cluster 
imposes limit on the maximum number of nodes a user can uses at 
any time. If these isolated clusters can work together, they 
collectively become more powerful. 

Unfortunately, users cannot directly deploy a MapReduce 
framework such as Hadoop on top of these clusters to form a 
single larger MapReduce cluster. Typically the internal nodes of a 
cluster are not directly reachable from outside. However, 
MapReduce requires the master node to directly communicate 
with any slave node, which is also one of the reasons why 
MapReduce frameworks are usually deployed within a single 
cluster.  Therefore, one challenge is to make multiple clusters act 
collaboratively as one so it can more efficiently run MapReduce.  
There are two possible approaches to address this challenge. One 
is to unify the underlying physical clusters as a single virtual 
cluster by adding a special infrastructure layer, and run 
MapReduce on top of this virtual cluster. The other is to make the 
MapReduce framework directly working with multiple clusters 
without needing additional special infrastructure layers. 

We propose a hierarchical MapReduce framework which takes 
the second approach to gather isolated cluster resources into a 
more capable one for running MapReduce jobs.  Kavulya et al. 
characterize MapReduce jobs into four categories based on their 
execution patterns: map-only, map-mostly, shuffle-mostly, and 
reduce-mostly, and also find that 91% of the MapReduce jobs 
they have surveyed fall into the map-only and map-mostly 
categories [10]. Our framework partitions and distributes 
MapReduce jobs from these two categories (map-only and map-
mostly) into multiple clusters to perform map-intensive 
computation, and collects and combines the outputs in the global 
node. Our framework also achieves load-balancing by assigning 
different task loads to different clusters based on the cluster size, 
current load, and specifications of the nodes.  We have 
implemented the prototype framework using Apache Hadoop. 

The rest of the paper is organized as follows. Section 2 presents 
some related works. Section 3 gives an overview of our 
hierarchical MapReduce framework. Section 4 presents more 
details on the multiple AutoDock runs using MapReduce. Section 
5 gives experiment setup and result analysis. The conclusion and 
future work are given in Section 6. 

2. RELATED WORKS 
Researchers have put significant efforts to the easy submission 
and optimal scheduling of massive parallel jobs in clusters, grids, 
and clouds.  Conventional job schedulers, such as Condor [12], 
SGE [6], PBS [8], LSF [23], etc., aim to provide highly optimized 
resource allocation, job scheduling, and load balancing, within a 
single cluster environment. On the other hand, grid brokers and 
metaschedulers, e.g., Condor-G [4], CSF [3], Nimrod/G[1], 
GridWay [9], provide an entry point to multi-cluster grid 
environments. They enable transparent job submission to various 
distributed resource management systems, without worrying about 

the locality of execution and available resources there. With 
respect to the AutoDock based virtual screening, our earlier 
efforts presented at National Biomedical Computation Resource 
(NBCR) [14] Summer Institute 2009, addressed the performance 
issue of massive docking processes by distributing the jobs to the 
grid environment. We used the CSF4 [3] meta-scheduler to split 
docking jobs to heterogeneous clusters where these jobs were 
handled by local job schedulers including LSF, SGE and PBS. 

Clouds give users a notion of virtually unlimited, on-demand 
resources for computation and storage. Attributed to its ease of 
executing pleasantly parallel applications, MapReduce has 
become a dominant programming model for running applications 
in a cloud. Researchers are discovering new ways to make 
MapReduce easier to deploy and manage, more efficient and 
scalable, and also more able to accomplish complex data 
processing tasks.  Hadoop On Demand (HOD) [7] uses the 
TORQUE resource manager [16] to provision and manage 
independent MapReduce and HDFS instances on shared physical 
nodes. The authors of [21] have identified some fundamental 
performance limitation issues in Hadoop and in the MapReduce 
model in general which make job response time unacceptably 
long when multiple jobs are submitted; by substituting their own 
scheduler implementation, they are able to overcome these 
limitations and improve the job throughput.  CloudBATCH [22] is 
a prototype job queuing mechanism for managing and dispatching 
MapReduce jobs and commandline serial jobs in a uniform way.  
Traditionally a cluster must separate MapReduce-enabled nodes 
because they are dedicated to MapReduce jobs and cannot run 
serial jobs.  But CloudBATCH uses HBase to keep various 
metadata on each job and also uses Hadoop to wrap commandline 
serial jobs as MapReduce jobs, so that both types of jobs can be 
executed using the same set of cluster nodes.  The Map-Reduce-
Merge is extended from the conventional MapReduce model to 
accomplish common relational algebra operations over distributed 
heterogeneous data sets [20].  In this extension, the Merge phase 
is a new concept that is more complex than the regular Map and 
Reduce phases, and requires the learning and understanding of 
several new components, including partition selector, processors, 
merger, and configurable iterators.  This extension also modifies 
the standard MapReduce phase to expose data sources to support 
some relational algebra operations in the Merge phase.  

Sky Computing [11] provides end user a virtual cluster 
interconnected with ViNe [18] across different domains. It aims to 
bring convenience by hiding the underlying details of the physical 
clusters. However, this transparency may cause unbalanced 
workload if a job is dispatched over heterogeneous compute nodes 
among different physical domains.   

Our hierarchical MapReduce framework, aims to enable map-only 
and map-most jobs to be run across a number of isolated clusters 
(even virtual clusters), so these isolated resources can collectively 
provide a more powerful resource for the computation.  It can 
easily achieve load-balance because the different clusters are 
visible to the scheduler in our framework.  

3. HIERARCHICAL MAPREDUCE 
The hierarchical MapReduce framework we present in this paper 
consists of two layers.  The top layer has a global controller that 
accepts user submitted MapReduce jobs and distributes them 
across different local cluster domains.  Upon receiving a user job, 
the global controller divides the job into sub-jobs according to the 
capability of each local cluster.  If the input data has not been 
deployed onto the cluster already, the global controller also 
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