
A Hierarchical Framework for Cross-Domain
MapReduce Execution

Yuan Luo1, Zhenhua Guo1, Yiming Sun1, Beth Plale1, Judy Qiu1, Wilfred W. Li 2
1 School of Informatics and Computing, Indiana University, Bloomington, IN, 47405

2 San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, 92093

{yuanluo, zhguo, yimsun, plale, xqiu}@indiana.edu, wilfred@sdsc.edu

ABSTRACT
The MapReduce programming model provides an easy way to
execute pleasantly parallel applications. Many data-intensive life
science applications fit this programming model and benefit from
the scalability that can be delivered using this model. One such
application is AutoDock, which consists of a suite of automated
tools for predicting the bound conformations of flexible ligands to
macromolecular targets. However, researchers also need
sufficient computation and storage resources to fully enjoy the
benefit of MapReduce. For example, a typical AutoDock based
virtual screening experiment usually consists of a very large
number of docking processes from multiple ligands and is often
time consuming to run on a single MapReduce cluster. Although
commercial clouds can provide virtually unlimited computation
and storage resources on-demand, due to financial, security and
possibly other concerns, many researchers still run experiments on
a number of small clusters with limited number of nodes that
cannot unleash the full power of MapReduce. In this paper, we
present a hierarchical MapReduce framework that gathers
computation resources from different clusters and run MapReduce
jobs across them. The global controller in our framework splits
the data set and dispatches them to multiple “local” MapReduce
clusters, and balances the workload by assigning tasks in
accordance to the capabilities of each cluster and of each node.
The local results are then returned back to the global controller for
global reduction. Our experimental evaluation using AutoDock
over MapReduce shows that our load-balancing algorithm makes
promising workload distribution across multiple clusters, and thus
minimizes overall execution time span of the entire MapReduce
execution.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems – Distributed applications.

General Terms: Design, Experimentation, Performance

Keywords: AutoDock, Cloud, FutureGrid, Hierarchical
MapReduce, Multi-Cluster

1. INTRODUCTION
Life science applications are often both compute intensive and
data intensive. They consume large amount of CPU cycles while
processing massive data sets that are either in large group of small

files or naturally splittable. These kinds of applications ideally fit
in the MapReduce [2] programming model. MapReduce differs
from the traditional HPC model in that it does not distinguish
computation nodes and storage nodes so each node is responsible
for both computation and storage. Obvious advantages include
better fault tolerance, scalability and data locality scheduling. The
MapReduce model has been applied to life science applications by
many researchers. Qiu et al. [15] describe their work to implement
various clustering algorithm using MapReduce.

AutoDock [13] is a suite of automated docking tools for
predicting the bound conformations of flexible ligands to
macromolecular targets. It is designed to predict how small
molecules of substrates or drug candidates bind to a receptor of
known 3D structure. Running AutoDock requires several pre-
docking steps, e.g., ligand and receptor preparation, and grid map
calculations, before the actual docking process can take place.
There are desktop GUI tools for processing the individual
AutoDock steps, such as AutoDockTools (ADT) [13] and BDT
[19], but they do not have the capability to efficiently process
thousands to millions of docking processes. Ultimately, the goal
of a docking experiment is to illustrate the docked result in the
context of macromolecule, explaining the docking in terms of the
overall energy landscape. Each AutoDock calculation results in a
docking log file containing information about the best docked
ligand conformation found from each of the docking runs
specified in the docking parameter file (dpf). The results can then
be summarized interactively using the desktop tools such as
AutoDockTools or with a python script. A typical AutoDock
based virtual screening consists of a large number of docking
processes from multiple targeted ligands and would take a large
amount of time to finish. However, the docking processes are
data independent, so if several CPU cores are available, these
processes can be carried out in parallel to shorten the overall
makespan of multiple AutoDock runs.

Workflow based approaches can also be used to run multiple
AutoDock instances; however, MapReduce runtime can automate
data partitioning for parallel execution. Therefore our paper
focuses on extending the MapReduce model for parallel execution
of applications across multiple clusters.

Cloud computing can provide scalable computational and storage
resources as needed. With the correct application model and
implementation, clouds enable applications to scale out with
relative ease. Because of the “pleasantly parallel” nature of the
MapReduce programming model, it has become a popular model
for deploying and executing applications in a cloud, and running
multiple AutoDock jobs certainly fits well for MapReduce.
However, many researchers still shun away from clouds for
different reasons. For example, some researchers may not feel
comfortable letting their data sit in shared storage space with
users worldwide, while others may have large amounts of data
and computation that would be financially too expensive to move

into the cloud. It is more typical for a researcher to have access to
several research clusters hosted at his/her lab or institute. These
clusters usually consist of only a few nodes, and the nodes in one
cluster may be very different from those in another cluster in
terms of various specifications including CPU frequency, number
of cores, cache size, memory size, and storage capacity.
Commonly a MapReduce framework is deployed in a single
cluster to run jobs, but any such individual cluster does not
provide enough resources to deliver significant performance gain.
For example, at Indiana University we have access to IU Quarry,
FutureGrid [5], and Teragrid [17] clusters but each cluster
imposes limit on the maximum number of nodes a user can uses at
any time. If these isolated clusters can work together, they
collectively become more powerful.

Unfortunately, users cannot directly deploy a MapReduce
framework such as Hadoop on top of these clusters to form a
single larger MapReduce cluster. Typically the internal nodes of a
cluster are not directly reachable from outside. However,
MapReduce requires the master node to directly communicate
with any slave node, which is also one of the reasons why
MapReduce frameworks are usually deployed within a single
cluster. Therefore, one challenge is to make multiple clusters act
collaboratively as one so it can more efficiently run MapReduce.
There are two possible approaches to address this challenge. One
is to unify the underlying physical clusters as a single virtual
cluster by adding a special infrastructure layer, and run
MapReduce on top of this virtual cluster. The other is to make the
MapReduce framework directly working with multiple clusters
without needing additional special infrastructure layers.

We propose a hierarchical MapReduce framework which takes
the second approach to gather isolated cluster resources into a
more capable one for running MapReduce jobs. Kavulya et al.
characterize MapReduce jobs into four categories based on their
execution patterns: map-only, map-mostly, shuffle-mostly, and
reduce-mostly, and also find that 91% of the MapReduce jobs
they have surveyed fall into the map-only and map-mostly
categories [10]. Our framework partitions and distributes
MapReduce jobs from these two categories (map-only and map-
mostly) into multiple clusters to perform map-intensive
computation, and collects and combines the outputs in the global
node. Our framework also achieves load-balancing by assigning
different task loads to different clusters based on the cluster size,
current load, and specifications of the nodes. We have
implemented the prototype framework using Apache Hadoop.

The rest of the paper is organized as follows. Section 2 presents
some related works. Section 3 gives an overview of our
hierarchical MapReduce framework. Section 4 presents more
details on the multiple AutoDock runs using MapReduce. Section
5 gives experiment setup and result analysis. The conclusion and
future work are given in Section 6.

2. RELATED WORKS
Researchers have put significant efforts to the easy submission
and optimal scheduling of massive parallel jobs in clusters, grids,
and clouds. Conventional job schedulers, such as Condor [12],
SGE [6], PBS [8], LSF [23], etc., aim to provide highly optimized
resource allocation, job scheduling, and load balancing, within a
single cluster environment. On the other hand, grid brokers and
metaschedulers, e.g., Condor-G [4], CSF [3], Nimrod/G[1],
GridWay [9], provide an entry point to multi-cluster grid
environments. They enable transparent job submission to various
distributed resource management systems, without worrying about

the locality of execution and available resources there. With
respect to the AutoDock based virtual screening, our earlier
efforts presented at National Biomedical Computation Resource
(NBCR) [14] Summer Institute 2009, addressed the performance
issue of massive docking processes by distributing the jobs to the
grid environment. We used the CSF4 [3] meta-scheduler to split
docking jobs to heterogeneous clusters where these jobs were
handled by local job schedulers including LSF, SGE and PBS.

Clouds give users a notion of virtually unlimited, on-demand
resources for computation and storage. Attributed to its ease of
executing pleasantly parallel applications, MapReduce has
become a dominant programming model for running applications
in a cloud. Researchers are discovering new ways to make
MapReduce easier to deploy and manage, more efficient and
scalable, and also more able to accomplish complex data
processing tasks. Hadoop On Demand (HOD) [7] uses the
TORQUE resource manager [16] to provision and manage
independent MapReduce and HDFS instances on shared physical
nodes. The authors of [21] have identified some fundamental
performance limitation issues in Hadoop and in the MapReduce
model in general which make job response time unacceptably
long when multiple jobs are submitted; by substituting their own
scheduler implementation, they are able to overcome these
limitations and improve the job throughput. CloudBATCH [22] is
a prototype job queuing mechanism for managing and dispatching
MapReduce jobs and commandline serial jobs in a uniform way.
Traditionally a cluster must separate MapReduce-enabled nodes
because they are dedicated to MapReduce jobs and cannot run
serial jobs. But CloudBATCH uses HBase to keep various
metadata on each job and also uses Hadoop to wrap commandline
serial jobs as MapReduce jobs, so that both types of jobs can be
executed using the same set of cluster nodes. The Map-Reduce-
Merge is extended from the conventional MapReduce model to
accomplish common relational algebra operations over distributed
heterogeneous data sets [20]. In this extension, the Merge phase
is a new concept that is more complex than the regular Map and
Reduce phases, and requires the learning and understanding of
several new components, including partition selector, processors,
merger, and configurable iterators. This extension also modifies
the standard MapReduce phase to expose data sources to support
some relational algebra operations in the Merge phase.

Sky Computing [11] provides end user a virtual cluster
interconnected with ViNe [18] across different domains. It aims to
bring convenience by hiding the underlying details of the physical
clusters. However, this transparency may cause unbalanced
workload if a job is dispatched over heterogeneous compute nodes
among different physical domains.

Our hierarchical MapReduce framework, aims to enable map-only
and map-most jobs to be run across a number of isolated clusters
(even virtual clusters), so these isolated resources can collectively
provide a more powerful resource for the computation. It can
easily achieve load-balance because the different clusters are
visible to the scheduler in our framework.

3. HIERARCHICAL MAPREDUCE
The hierarchical MapReduce framework we present in this paper
consists of two layers. The top layer has a global controller that
accepts user submitted MapReduce jobs and distributes them
across different local cluster domains. Upon receiving a user job,
the global controller divides the job into sub-jobs according to the
capability of each local cluster. If the input data has not been
deployed onto the cluster already, the global controller also

p
th
c
f
th
e
c
r

A
s
fr
w
M
c
p
le
b
s
c
s
–
r
f
o
m
a
c

3
F
M
g
tr
r
th
M
m
a

W
th
a
in
fr
n
b
jo

partitions input
hem to these c

clusters, the glo
final reduction u
he user. The bo

each receives su
controller, perfo
esults back to th

Although on the
similar to the M
framework is ver
work section, th
Merge model is
complex than
programmers im
earn this new co

but also need to m
source. Our fr
conventional Ma
supply two Redu
– instead of ju
equirement is t

formats of the lo
of the global Red
map-only, the pr
and the global co
clusters and plac

3.1 Archite
Figure 1 is a hig
MapReduce fram
global controller
ransferer, a w
educer. The bott
he distributed lo

MapReduce mas
manager. The co
accessible from t

Figure 1.

When a user sub
he job schedule

assigns them to
ncluding the cur

from each local
nodes making u
balance by ensur
ob in approxim

data proportion
clusters. After
bal controller c

using the global r
ottom layer cons
ub-jobs and inpu
orms local Map
he global control

e surface our fra
Map-Reduce-Mer

ry different in na
he Merge phase
s a new concep

the conventio
mplementing jobs

oncept along wi
modify the Map

ramework, on th
ap and Reduce,
ucers – one local
ust one for the
that the program
ocal Reducer out
ducer input key/v
rogrammer does
ontroller simply
es them under a

ecture
gh-level architec
mework. The to
r, which consi

workload collect
tom layer consis
ocal MapReduc
ster node with
ompute nodes in
the outside.

. Hierarchical M

bmits a MapRed
er splits the job
o each local cl
rrent workload r

cluster, as wel
up each cluster.
ring that all clust

mately the same

nally to the sub
the jobs are al

collects the outp
reducer which is

sists of multiple
ut data partition
pReduce compu
ler.

amework may a
rge model prese
ature. As discus

introduced in
pt which is dif
onal Map an
s under this mod
th the componen

ppers and Reduc
he other hand,
and a programm
Reducer, and on
regular MapR

mmer must ma
tput keys/value
value pairs. How
not need to sup

y collects the ma
common directo

cture diagram o
op layer in our
sts of a job s
tor, and a use
sts of multiple cl
e jobs, where e
a workload re

nside each of th

MapReduce Arc

duce job to the
b into a number
luster based on
reported by the w
ll as the capabi
. This is done
ters will finish th
time. The glob

b-jobs, and send
ll finished on a
puts to perform
s also supplied b
local clusters th
s from the glob

utation and send

appear structural
ented in [20], o
ssed in the relate
the Map-Reduc
fferent and mo
d Reduce, an
del must not on
nts required by
ers to expose da
strictly uses th

mer just needs
ne global Reduc

Reduce. The on
ake sure that th
pairs match tho

wever, if the job
pply any reducer
ap results from a
ory.

of our hierarchic
framework is th

scheduler, a da
e-supplied glob
lusters for runnin
each cluster has
eporter and a jo
he cluster are n

chitecture

global controlle
r of sub-jobs an
n several factor
workload report
ility of individu
to achieve loa

heir portion of th
bal controller al

ds
all

a
by
hat
bal
ds

lly
ur
ed

ce-
ore
nd

nly
it,

ata
he
to

cer
nly
he
se
is

rs,
all

cal
he
ata
bal
ng

a
ob

not

er,
nd
rs,
ter
ual
ad-
he
so

partitio
input d
transfer
configu
As soo
job sch
that clu
is very
control
the tim
to the
efficien
get the
get do
finished
will tra
receivin
reducer
the orig

3.2 P
The p
framew
comput
Global
from
syntact
Reduce
an inp
likewis
an inte
produc
pairs.
clusters
using t
functio
the loc
the Glo

Table

Func

R

Glob

Figure
among
diagram
Global
clusters
number
occur, a
(key/va
1, and t
(global
also M
consum
interme
pairs ar
the loc
key wit

ons the input da
data have not
rer would transf
uration files wit
on as the data tr
heduler at the gl
uster to start the
y expensive, we
ller to transfer d

me spent for tran
computation tim
nt and effective t
full benefit of p

ominated by da
d on a local clu
ansfer the outp
ng all the outpu
r will be invoked
ginal job is map-

Programmin
programming m
work is the “M
tations are expre
Reduce. We use
the “local” R

tically, a Globa
er. The Mappe
put pair and p
se, the Reducer,
ermediate input
ed by the Map t
Both the Mapp

s. The Global R
the output from

ons and also the i
cal Reducers ou
obal Reducer inp

e 1. Input and o

ction Name

Map

Reduce

bal Reduce

2 uses a tree-lik
the Map, Redu

m, the root nod
Reduce takes

s that perform th
rs shown in Fig
and the arrows i
alue pairs) flow.
then the input ke
l controller) to th

Map tasks are lau
mes an input
ediate key/value

are passed to the
cal clusters. Eac
th a set of corre

ata in proportion
been deployed

fer the user supp
th the input dat
ransfer finishes
lobal controller
e local MapRedu

recommend tha
data when the siz
nsferring the dat
me. For large d
to deploy them b
parallelization an
ata transfer. Af
ster, if the appli

put back to the
ut data from al
d to perform the
-only.

ng Model
model of our

Map-Reduce-Glob
essed as three fu
e the term “Glob

Reducer, but
al Reducer is

er, just as a conv
produces an int

just as a conve
t key and a se
task, and outputs
per and the Red
Reducer is execu
m the local clus
input and output

utput keys/value
put key/value pa

output types of M
Reduce functi

Input ሺ݇௜, ,௜ሻ ሺ݇௠ݒ ሾݒଵ௠,… , ,ሺ݇௥ݒ ሾݒଵ௥, … , ௡ݒ
ke structure to sh
uce, and Global
de is the globa
place, and the

the Map and Re
gure 2 indicate t
indicate the direc
 A job is submi
ey/value pairs ar
he child nodes (l

unched at the loc
key/value pair

e pairs. In Step
e Reduce tasks,
ch Reduce task
esponding value

n to the sub-job
d before-hand.
plied MapReduce
ta partitions to t
for a particular
notifies the job

uce job. Since d
at users only us
ze of input data
ta is insignifican
data sets, it wou
before-hand, so t
nd the overall tim
fter the local s
ication requires,
e global control
ll local clusters
e final reduction

hierarchical
bal Reduce” m
unctions: Map, R
bal Reduce” to d
conceptually a
just another c

entional Mapper
termediate key/
ntional Reducer

et of correspond
s a different set o
ducer are execut
uted on the glob
sters. Table 1 l
t data types. Th
pairs must mat

irs.

Map, Reduce, a
ions

Oሺ݇௠ݒ௡௠ሿሻ ሺ݇ݒ௡௥ሿሻ ሺ݇
how the data flo
l Reduce functi
al controller on

leaf nodes rep
educe functions.
the order in whi
ctions in which t
itted into the sys
re passed from th
local clusters) in
cal clusters wher
r and produces
p 3, the set of i
which are also
consumes an i

s, and produces

sizes if the
 The data

e jar and job
the clusters.
cluster, the
manager of

data transfer
e the global
is small and
nt compared
uld be more
that the jobs
me does not

sub-jobs are
the clusters

ller. Upon
, the global
task, unless

MapReduce
model where
Reduce, and
distinguish it
as well as
conventional
r does, takes
/value pair;
r does, takes
ding values
of key/value
ted on local
al controller
lists these 3
he formats of
tch those of

and Global

Output ௠, ,௠ሻ ݇௥ݒ ,௥ሻ ݇௢ݒ ௢ሻݒ
ow sequence
ion. In this
n which the
present local

The circled
ch the steps
the data sets
stem in Step
he root node
n Step 2, and
re each Map
s a set of
intermediate
launched at

intermediate
 yet another

s
a
R
c
R
S

T
ju
h
c
d
c
m
in
e
c
c

3
T
a
h

T
s
p
c
o
w

In
s
ru
c
a
d
a
to

W
a
s
w
ru
b
a
M
bܯ
a
o∈
a

set of key/value p
are send back t
Reduce task. The
corresponding va
Reducers, perfor
Step 5.

Theoretically, the
ust two hierarch

have more depth
controllers simila
divide its assign
clusters. But for
more than two la
ncrease the com

each additional l
clusters available
create a broader b

3.3 Job Sch
The main challen
among each loc
how the datasets

The input datase
submitted by the
pre-deployed on
catalog to the us
on the global co
when partitioning

n this paper, w
submitted by the
un separate sub

consuming and
automatically co
dataset using us
and divides the d
o each cluster.

We make the a
application are c
same amount of
we will see in
unning multiple

behavior. The sc
as follows. Let
Mappers that can
be the number ݈݅ܽݒܣݎ݁݌݌ܽܯ௜	b
added for execut
of CPU Cores o∈ ሼ1, . . . , nሽ. We
assigns to each c

pairs as output.
to the global c
e Global Reduc
alues that were o
rms the computa

e model we pres
hical layers, i.e.
h by turning th
ar to the global
ed jobs and run
r all practical pu
ayers for the for

mplexity as well
ayer. If a resear
e, it is most like
bottom layer tha

Figure 2. Progr

heduling and
nge of our work
al MapReduce
are partitioned.

et for a particula
e user to the glob

the local cluste
ser who runs the
ntroller takes in
g the datasets an

we focus on the
e user. If the us
b-jobs on diffe
error-prone. O

ount the total n
er-implemented
dataset and assig

assumption that
computation inte

time to run – th
the next sectio

 AutoDock insta
cheduling algorit
t ݎ݁݌݌ܽܯݔܽܯ௜
n be run concurr

of Mappers
be the number o
tion on ݎ݁ݐݏݑ݈ܥ௜
n ݎ݁ݐݏݑ݈ܥ௜, whe

e also use ߩ௜ to d
ore, that is,

In Step 4, the lo
controller to per
e task takes in a
originally produc
ation, and produ

sent can be exten
the tree structur

he leaf clusters
controller and e

n them on its ow
urposes, we do n
reseeable future
as the overhead

rcher has a large
ely more efficie
an to increase the

ramming Mode

d Data Part
k is how to balan

cluster, which

ar MapReduce j
bal controller be
ers and is expose
e MapReduce jo

nto consideration
nd scheduling the

situation where
ser manually spl
erent clusters, i
Our global cont
number of reco
InputFormat an

gns the correct n

all map tasks
ensive and take a
his is a reasonab
on that applyin
ances displays ex
thm we use for
 be the maxim
rently on ݁ݐݏݑ݈ܥ
currently runni
of available Map௜; ܰ݁ݎ݋ܥ݉ݑ௜ be
ere i is the clus
define how many

ocal reduce outp
rform the Glob
a key and a set
ced from the loc
uces the output

nded to more tha
re in Figure 2 ca
into intermedia
ach would furth

wn set of childre
not see a need f
, because it cou
d introduced wi
e number of sma
ent to use them
e depth.

el

titioning
nce the workloa
is closely tied

job may be eith
efore execution,
ed via a metada
ob. The schedul
n the data locali
e job.

e input dataset
lit the dataset an
t would be tim
troller is able
ords in the inp
nd RecordReade
number of record

of a MapRedu
approximately th
ble assumption

ng MapReduce
xactly this kind
our framework
mum number ݁ݎ௜; ݊ݑܴݎ݁݌݌ܽܯ
ng on ݎ݁ݐݏݑ݈ܥ
ppers that can b
e the total numb
ter number, and
y map tasks a us

put
bal
of

cal
in

an
an
ate
her
en
for
uld
ith
all
to

ds
to

her
or

ata
ler
ity

is
nd
me
to

put
er,
ds

ce
he
as
to
of
is
of ݊௜ ݎ௜;
be

ber
d i
ser

ܽܯ
Norma
comput

ܽܯ
For sim

௜ߛ ൌ
The we
factor ߠ
speed,
depend
comput

 ܹ݁
Let ܾ݋ܬ
x, whic
the Ma
schedu

ܾ݋ܬ
After p
using e
move t
local cl

4. A
We ap
AutoDo
framew
outputs
the Aut
are liga
simple
input
corresp

Table

au

sum

For ou
Reduce

1) Map
executa
summa
constan

2) Redu
the con

௜ݎ݁݌݌ܽܯݔܽ ൌ ௜ߩ
ally we set ߩ௜ ൌ
tation intensive j݈ܽ݅ܽݒܣݎ݁݌݌௜ ൌ ܯ

mplicity, let ൌ ݅ܽݒܣݎ݁݌݌ܽܯ
eight of each suߠ௜ is the compu
memory size, s

ding on the chara
tation intensive ݄݁݅݃ݐ௜ ൌ ఊ೔ൈఏ೔∑ ఊ೔ൈ೔ಿసభܾ݌ܽܯ௫ be the to
ch can be calcula
ap tasks, and ܾ݋ܬ
uled to ݎ݁ݐݏݑ݈ܥ௜ fܾ݌ܽܯ௫,௜ 	ൌ 	ܹ݁݅
partitioning the
equation (5), we
the data items ac
lusters, or from l

UTODOCK
pply the Map
ock instances

work to prove th
s of AutoGrid (o

utoDock. The ke
and names and

input file form
record, which

ponds to a map ta

e 2. AutoDock M

Field

ligand_name

autodock_exe

input_files

output_dir

utodock_parame

summarize_exe

mmarize_param

ur AutoDock M
e functions are im

p: The Map task
able against a sh
arize_result4.py
nt intermediate k

uce: The Reduc
nstant intermedi

௜ ൈ ௜ ൌ݁ݎ݋ܥ݉ݑܰ 1 in the loca
jobs, so we get ݎ݁݌݌ܽܯݔܽܯ௜ െ
݈݅௜
ub-job can be ca
uting power of
storage capacity
acteristics of the
or I/O intensive

ൈఏ೔	
otal number of M
ated from the nuܾ݌ܽܯ௫,௜	 be the
for job x, so that݄݅݃ݐ௜ ൈ 	 ܽܯܾ݋ܬ
MapReduce jo

e number the da
ccordingly, eith
local cluster to l

K MAPRED
pReduce paradi

using the
he feasibility of
one tool in the A

ey/value pairs of
the location of

mat for AutoDo
contains 7 fi

ask.

MapReduce inp

e Pat

Ou

eters

e P

meters Su

MapReduce, the
mplemented as f

k takes a ligand t
hared receptor, an

to output the lo
key.

e task takes all
iate key and sor

al MapReduce

െ݊ݑܴݎ݁݌݌ܽܯ௜

lculated from (4
each cluster, e.g

y, etc. The actu
e jobs, i.e., whet

Map tasks for a p
umber of keys in

number of Map
t ݌௫	

ob to Sub-MapR
ta items of the d
er from global c

local cluster.

DUCE
igm to runnin

hierarchical
our approach. W

AutoDock suite)
f the input of the
ligand files. We

ock MapReduce
ields shown in

put fields and de

Descriptio

Name of the l

th to AutoDock

Input files of Au

tput directory of

AutoDock para

Path to summari

ummarize script p

Map, Reduce,
follows:

to run the AutoD
nd then runs a P
owest energy re

the values corre
rts the values by

 (1)

clusters for

 (2)

 (3)

4) where the
g., the CPU

ual ߠ௜ varies
ther they are

 (4)

articular job
n the input to
p tasks to be

 (5)

Reduce jobs
datasets and
controller to

ng multiple
MapReduce
We take the
) as input to
e Map tasks
e designed a
 jobs. Each
n Table 2,

escriptions

on

ligand

executable

utoDock

f AutoDock

ameters

ize script

parameters

and Global

Dock binary
Python script
esult using a

esponding to
y the energy

fr
lo

3
o
in

5
W
h
a
s
r
in
to
c
in
m
lo

In
c
c
fr
r
c
fr
m
b
p
E

T
b
m
in
H
H
ti

W
H
ru
d
jo
E
s

Cߩ
o
v
v
e
c

In
th

from low to high
ocal reducer inte

3) Global Reduc
of the local redu
nto a single file

5. EVALUA
We evaluate o
hierarchical Map
and Shell scripts
stage-in and stag
eporter is a c
nformation acce
o make it a sep

code. Unfortun
nformation we

modify Hadoop
oad data by usin

n our evaluation
cluster and two c
cluster which ha
from outside. A
elated tasks, inc

cancellation. The
from outside. Se
mounted to each
by the jobs. Futu
parts, and each
Eucalyptus, Nim

Tab

Cluster

Hotel Int

Alamo Int

Quarry Int

To deploy Hado
built-in job sch
maintainability a
n shared directo

Hadoop program
Hadoop daemon
imes.

We use three cl
Hotel and Future
un Linux 2.6.1

dedicated maste
obtracker) and

Each node in
specifications of

Considering Autߩ௜ ൌ 1 per sectio
on each node is
version of Auto
version. The gl
execution detail
complexity.

n our experimen
he most import

h, and outputs th
ermediate key.

ce: The Global R
ucer intermediat
by the energy fr

ATIONS
our model by
pReduce system
s. We use ssh a
ge-out. On the l
component that
essed by global s
parate program
nately, Hadoop

need to extern
code to add an

ng Hadoop Java A

n, we use several
clusters in Future
s several login n

After a user log
cluding job subm
e computation no
everal distributed

computation no
ureGrid partition
of which prov

mbus, and HPC.

ble 3. Cluster N

CPU

tel Xeon 2.93GH

tel Xeon 2.67GH

tel Xeon 2.33GH

oop to traditiona
heduler (PBS)
and performance
ry while store d

m (Java jar file
ns whereas the

lusters for evalu
eGrid Alamo. Ea
18 SMP. With
er node (HDF
other nodes ar
these clusters

these cluster no

oDock being a C
on 3.3 so that th

equal to the nu
oDock we use i
obal controller
ls because our

nts, we use 6,00
ant configuratio

he sorted results

Reduce finally ta
te key, sorts an
rom low to high.

prototyping a
m. The system i
and scp scripts
local clusters’ s

exposes Hado
scheduler. Our or
without touchin

does not e
nal applications,
n additional dae
APIs.

l clusters includ
eGrid. IU Quarry
nodes that are p

gins, he/she can
mission, job stat
odes however, c
d file systems (L
ode for storing in
ns the physical c
vides a different

Node Specificati

Cache s

Hz 8192K

Hz 8192K

Hz 6144K

al HPC clusters
to allocate no

e, we install the
data in local direc
es, etc.) is load
HDFS data is a

uations – IU Qu
ach cluster has 2
hin each cluster
FS namenode
re data nodes a
s has an 8-co
des are listed in

CPU-intensive a
e maximum num
umber of cores
is 4.2 which is

does not care
r local job ma

00 ligands and 1
on parameters is

s to a file using

akes all the valu
nd combines the

a Hadoop base
is written in Jav
to finish the da
ide, the workloa
oop cluster loa
riginal design w

ng Hadoop sour
xpose the loa
, and we had

emon that collec

ing the IU Quar
y is a classic HP

publicly accessib
n do various jo
tus query and jo
annot be accesse
Lustre, GPFS) a
nput data accesse
cluster into sever
t testbed such

ions.

ize Memory

KB 24GB

KB 12GB

KB 16GB

, we first use th
odes. To balan

Hadoop progra
ctory, because th

ded only once b
accessed multip

uarry, FutureGr
1 nodes. They a
r, one node is
and MapRedu

and task tracker
ore CPU. Th
Table 3.

application, we s
mber of map task
on the node. Th

s the latest stab
e about low-lev
anagers hide th

1 receptor. One
s ga_num_evals

g a

ues
em

ed
va
ata
ad
ad

was
ce
ad
to

cts

rry
PC
ble
b-
ob
ed

are
ed
ral
as

y

he
ce

am
he
by
ple

rid
all

a
ce
rs.
he

set
ks
he

ble
vel
he

of
s -

number
probab
experie
5,000,0

Figu

Figure
during
tracker
momen
number
beginni
Toward
quickly
indicati
MapRe
by thos

Tab

Num
Map
Per C

1

5

1

1

2

Test Ca
Our fir
Contro
perform
AutoDo
2000 li
4 for re

As is
number
linear,
The tot

r of evaluation
ility that better

ences, the ga_nu
000. We configu

ure 3: Number
M

3 plots the num
the job executio

rs, so the maxim
nt is 20 * 8 =
r of running m
ing and stays
ds the end of j
y (roughly 0 -
ing that node u
educe tasks come
se new tasks.

ble 4. MapRedu
under dif

mber of
p Tasks
Cluster

Ho
(seco

100 10

500 17

000 29

500 43

2000 59

ase 1:
rst test case is a
ller to find out

ms under diffe
ock in the Had
igand/receptor p
esults.

reflected in Fig
r of map tasks
regardless of th
tal execution tim

s. The larger it
r results may be
um_evals is typi
ure it to 2,500,00

of running map
MapReduce ins

mber of running m
on. The cluster

mum number of
160. From the

map tasks quic
approximately
job execution,
5). Notice the

usage ratio is low
e in, the availab

uce execution tim
fferent number

Execution Tim

otel
onds)

Al
(sec

004 8

763 1

986 2

304 4

942 5

base test case w
t how each of
erent numbers

doop to process
pairs in each of t

gure 4, the to
in test case 1

he startup overhe
me of the jobs ru

ts value is, the
e obtained. Bas
ically set from 2
00 in our experim

p tasks for an A
stance

map tasks within
has 20 data nod

f running map t
 plot, we can s

ckly grows to
constant for a
it drops to a

ere is a tail ne
w. At this mom
le mappers will

me on different
r of map tasks.

me on Three Clu

lamo
conds)

Q
(s

821

771

2962

4251

849

without involving
our local Hado
of map task

100, 500, 1000
the three clusters

otal execution ti
on each cluster

ead of the MapR
unning on the Qu

e higher the
sed on prior
2,500,000 to
ments.

Autodock

n one cluster
des and task
tasks at any
see that the
160 in the
long time.

small value
ear the end,
ment, if new

be occupied

t clusters

usters

Quarry
seconds)

1179

2529

4370

6344

8778

g the Global
oop clusters
s. We ran
0, 1500 and
s. See Table

ime vs. the
r is close to
Reduce jobs.
uarry cluster

is
T
C

T
O
M
c
e
c
s
ru
d
p
s
c
th
b
s
c

T
li
g
s
a
jo

s approximately
The main reason
CPUs compared

Figure 4. Loca

Test Case 2:
Our second tes
MapReduce jobs
clusters, which i
equation (4) fro
constant, and i ∈
shows ߛଵ ൌ ଶߛ
unning beforeh

distribution on e
partition the dat
stage the data
configuration file
he local MapRe

back to the globa
shows the data
contexts.

Figure 5. Tw
partitioned da

The input datas
igands. The rec

gridmap files to
stored in 600
approximately 5-
ob configuration

y 50% slower th
n is that nodes o
with that of Ala

al cluster MapR
different numb

st case shows
s with ߛ-weighte
is based on the
om section 3.3,∈ ሼ1, 2, 3ሽ	 for oൌ ଷߛ ൌ 160, g
hand. Therefor
each cluster is ܹ
taset (apart from

together with
e to local cluste
educe execution
al controller for
movement cos

wo-way data m
atasets: local M

et of AutoDock
ceptor is describ
otaling 35MB in
0 separate di
-6 KB large. In
n file together h

han running on A
of the Quarry cl
amo and Hotel.

Reduce execution
ber of map tasks

the performan
ed partitioned da

following param
, we set ߠ௜ ൌ ܥ
our three cluster
given no MapR
re, the weightܹ݄݁݅݃ݐ௜ ൌ 1/3.
m shared datase
h the jar exe
rs for execution

n, the output fil
r the final global
st in the stage-

movement cost o
MapReduce inpu

k contains 1 re
bed as a set of
n size, and the
irectories, each
n addition, the e
has a total of 30

Alamo and Hote
uster have slow

n time based on
s.

nce of executin
atasets on differe
meters setup. Fܥ, where C is

rs. Our calculatio
Reduce jobs a
t of map task
 We then equal
et) into 3 piece
cutable and jo

n in parallel. Aft
es will be stage
l reduce. Figure
-in and stage-o

f ࢽ-weighted
uts and outputs

eceptor and 600
approximately 2
6000 ligands a

h of which
executable jar an
0KB in size. F

el.
wer

n

ng
ent
or
a

on
are
ks
lly
es,
ob
ter
ed
 5

out

00
20
are

is
nd
or

each c
contain
executa
transfer
decomp
in.” Sim
files to
compre
control
As we
13.88 t
takes 2
little lo
compar
executi

The tim
MapRe
clusters
data m
in Figu
time t
approx
Hotel a
all the
only 16
on Qua

Figur

Test Ca
In our
MapRe
differen
test cas
assigne
the sam
of time
slower
Quarry
Intel(R
2.93GH
that of
differen
frequen
number
capabil
schedu
Here wߠଷ ൌ 2

cluster, the glo
ning 1 receptor
able jar, and jo
rs it to the d
pressed. We call
milarly, when th

ogether with con
essed into a ta
ller. We call this
can see from F

to 17.3 seconds t
2.28 to 2.52 sec
onger to transfer
re to the relati
ions.

me it takes to r
educe clusters va
s. The local M

movement costs (
ure 6. The Hotel
to finish their

ximately 3,000 m
and Alamo. The
local results are
6 seconds to fin
arry becomes the

re 6. Local Map
datasets, i

ase 3:
third test case,

educe jobs wit
nt clusters, whi
ses 1 and 2, we
ed the same num
me amount of da
e to finish. A
than Alamo an

y, Alamo and H
R) Xeon(R) X55
Hz, respectively
processing time
nce in processin
ncies, therefore,
r of cores for
lities of each

uling policy to a
we set ߠଵ ൌ 2.92 for Quarry. As

obal controller
r file set, 200

ob configuration
destination clus
l this global-to-l
he local MapRe
ntrol files (typica
arball and trans
s local-to-global
Figure 5, the da
to finish, while t
conds to finish.
r the data but th
ively long dura

run 2000 map
aries due to the d

MapReduce exec
(both data stage
 and Alamo clus
r jobs, but t

more seconds to f
e Global Reduce
e ready in the gl
nish. Thus, the r
e bottleneck on t

pReduce turnar
including data m

we evaluate the
th ߠߛ-weighted

ich is based on
have observed t

mber of compute
ata, they take sig

Among the three
d Hotel. The sp

Hotel are Intel(R
550 2.67GHz, an
y. The inverse ra
e match roughly.
ng time is main
, it is not enou
r load balanci
core are also
add CPU freque93 for Hotel, ߠ
is for test case

creates a 14
00 ligands dire
n files, all comp
ster, where the
local procedure
duce jobs finish
ally 300-500KB
sferred back to
procedure “data

ata stage-in proc
the data stage-ou
The Alamo clu

he difference is i
ation of local

tasks on each o
different specific
cution makespan
-in and stage-ou
sters take simila
the Quarry clu
finish, about 50%
e task is only in
lobal controller,
relatively poor p
the current job d

round time of ࢽ
movement cost

e performance o
d partitioned d
the following s

that although all
e nodes and core
gnificantly diffe
e clusters, Quar
pecifications of t
R) Xeon(R) E5

nd Intel(R) Xeon
atio of CPU fre
. So we hypothe
ly due to the di

ugh to merely fa
ing, and the c
important. We

ency as a factoߠଶ ൌ 2.67 for A
2, we again hav

MB tarball
ectories, the
pressed, and
e tarball is
“data stage-

h, the output
 in size) are
 the global
a stage-out.”
cedure takes
ut procedure
uster takes a
insignificant
MapReduce

of the local
cation of the
n, including
ut) is shown
ar amount of
uster takes
% more than
nvoked after
and it takes

performance
distribution.

 weighted-ࢽ

of executing
datasets on
setup. From
 clusters are

es to process
rent amount
rry is much
the cores on
5410 2GHz,
n(R) X5570
equency and
esize that the
ifferent core
factor in the
computation

refine our
r to set 	ߠ௜.
Alamo, and

ve calculated

ߛ
b

aܹ
to

F
s
li
c
1
2
tr
r
p

F

W
m
s
a
th

ଵߛ ൌ ଶߛ ൌ ଷߛ ൌ
beforehand. Thܹ݄݁݅݃ݐଶ ൌ 0.35
and Quarry respe
o the new weigh

Table 5. Numb

Cluster

Hotel

Alamo

Quarry

Figure 7 shows t
scenario. The va
igands sets are

can see from the
17.64 seconds to
2.2 to 2.6 secon
ransfer the data
elatively long d

previous test case

Figure 7. Tw
partitioned da

Figure 8. Local
data

With weighted
makespan, includ
stage-out) are sh
amount of time
hat our refined s

160, given no
hus, the wei505, and ܹ݄݁݅݃
ectively. The da
ht. Table 5 show

ber of Map Tas
Time on E

Number of Map

2316

2103

1581

the data movem
ariations in the s
quite small, whi
graph, the data

o finish, while th
nds to finish. A

but the differen
duration of local
e.

wo-way data mo
atasets: local M

l MapReduce tu
asets, including

partition, the
ding data movem
hown in Figure
to finish the loc
scheduler config

o MapReduce j
ights are ܹ݄݁ݐଷ ൌ 0.2635 f
taset is also part
s how the datase

sks and MapRed
ach Cluster

p Tasks
Exec

(S

ment cost in the w
size of tarball di
ich is smaller th
stage-in proced

he data stage-ou
Alamo takes a li
nce is also insig

MapReduce ex

ovement cost of
MapReduce inpu

urnaround time
data movemen

e local MapR
ment costs (both
8. All three clu

cal MapReduce
guration improve

jobs are runnin݄݁݅݃ݐଵ ൌ 0.386
for Hotel, Alam
titioned accordin
et is partitioned.

duce Execution

cution Time
Seconds)

5915

5888

6395

weighted partitio
fferent number
han 2MB. As w
ure takes 12.34

ut procedure tak
ittle bit longer

gnificant given th
xecutions as in th

f weighted-ࣂࢽ
uts and outputs

e of ࣂࢽ-weighte
t cost

Reduce executio
h data stage-in an
usters take simil
jobs. We can s

es performance b

ng 0,
mo,

ng

n

on
of

we
to

kes
to
he
he

ed

on
nd
lar
ee
by

balanci
reducti
sorts th
process
second

6. C
In this
framew
clusters
implem
Reduce
functio
control
multipl
functio
control
capacit
We use
perform
worklo
minimu

There a
future
applica
the CPU
has lar
Other s
to be c
in our c
scp, wh
Howev
solution
with a
can als
well in
alternat
also ex
data set

7. A
This w
and M
providi
feedbac
to Chat

8. RE
[1] Bu

ar
sy
HP

[2] De
da
(Ja
ht

[3] Di
W
Li
Vo
10
ht

ing workload am
ion combines pa
he results. The
sing 6000 map

ds.

ONCLUSIO
s paper, we ha
work that can ga
s and run MapR

mented in this f
e” model wher
ons: Map, Red
ller in our frame
le “local” MapR

ons, and the loc
ller to run the G
ty-aware algorith
e multiple Auto

mance of our
oads are well ba
um.

are several pote
work. Based

ation, our schedu
U specifications
rger data sets t
scheduling metr

considered. The
current prototyp
hich may not w

ver, they can be
n for remote job
meta-scheduler,

so be switched to
n heterogeneous
tive to transferri

xplore the feasib
ts among global

CKNOWLE
work funded in p
Microsoft. Our

ing us early acc
ck on our work.
thura Herath for

REFERENC
uyya, R., Abram
rchitecture for a r
ystem in a global
PC ASIA'2000,

ean, J. and Ghem
ata processing on
anuary 2008), 10
ttp://doi.acm.org

ing, Z., Wei, X.,
W. Customized Pl

ife Sciences App
olume 25, Numb
0.1007/s00354-0
ttp://dx.doi.org/1

mong clusters. In
artial results fro
e average globa
p tasks (ligand

ON AND FU
ave presented
ather computatio
Reduce jobs acr
framework adop
re computation
duce, and Glo
work splits the d
Reduce clusters

cal results are r
Global Reduce
hm to balance th
oDock runs as
framework. Th

alanced and the

ential improvem
on the comput
uling algorithm
s. It will not be th
that data move
rics such as disk
remote job subm

pe are built upon
work well in a h
e replaced by ot
b submission is
, e.g., CSF and N
o solutions that
s environments
ing data explicit

bility of using a
l controller and l

EDGMENT
part by the Perv
special thanks
cess to FutureG
. We also would
r discussions.

ES
mson, D., Giddy,

resource manage
l computational
China, IEEE CS

mawat, S. 2008.
n large clusters.
07-113. DOI=10

g/10.1145/13274

, Luo, Y., Ma, D
lug-in Modules
plications, New
ber 4, 373-394, 2
007-0024-6
10.1007/s00354-

n the final stage
om lower-level c
al reduce time
d/receptor dock

UTURE WO
a hierarchical
on resources fro
ross them. The
pt the “Map-Red
ns are expresse
obal Reduce.
data set and map
s to run Map a
returned back to
function. We u

he workload amo
a test case to e
he result show

e total makespan

ents we will ad
te-intensive nat
only takes cons
he case when an

ement becomes
k I/O and netwo
mission and data
n the combination
heterogeneous e
ther solutions. O
to integrate our

Nimrod/G. Data
are more scalab
, such as gridf
tly from site to s
shared file syst

local Hadoop clu

TS
vasive Technolo
to Dr. Geoffre

Grid resources a
d like to express

 J. Nimrod/G: an
ement and sched
grid, in: Proceed

S Press, USA, 20

. MapReduce: si
Commun. ACM

0.1145/1327452
452.1327492

D., Arzberger, P.
in Metaschedule
Generation Com
2007, DOI:

-007-0024-6

e, the global
clusters and
taken after

king) is 16

ORK
MapReduce

om different
applications
duce-Global
ed as three
The global

ps them onto
and Reduce
o the global
use resource
ong clusters.
evaluate the

ws that the
n is kept in

ddress in our
ture of the
sideration of
n application

significant.
ork I/O need
a movement
n of ssh and
nvironment.

One possible
r framework
a movement

ble and work
ftp. As an
site, we will
tem to share
usters.

ogy Institute
ey Fox for

and valuable
s our thanks

n
duling
dings of the
000.

implified
M 51, 1

.1327492

W., Li, W.
er CSF4 for

mputing

[4] Frey, J., Tannenbaum, T., Livny, M., Foster, I., Tuecke, S.
2002. Condor-G: A Computation Management Agent for
Multi-Institutional Grids. Cluster Computing 5, 3 (July
2002), 237-246. DOI=10.1023/A:1015617019423
http://dx.doi.org/10.1023/A:1015617019423

[5] FutureGrid, http://www.futuregrid.org

[6] Gentzsch, W. (Sun Microsystems). 2001. Sun Grid Engine:
Towards Creating a Compute Power Grid. In Proceedings of
the 1st International Symposium on Cluster Computing and
the Grid (CCGRID '01). IEEE Computer Society,
Washington, DC, USA, 35-39

[7] Hadoop On Demand,
http://hadoop.apache.org/common/docs/r0.17.2/hod.html

[8] Henderson, R. L.. 1995. Job Scheduling Under the Portable
Batch System. In Proceedings of the Workshop on Job
Scheduling Strategies for Parallel Processing (IPPS '95),
Dror G. Feitelson and Larry Rudolph (Eds.). Springer-
Verlag, London, UK, 279-294.

[9] Huedo, E., Montero, R. S., and Llorente, I. M. 2004. A
framework for adaptive execution in grids. Softw. Pract.
Exper. 34, 7 (June 2004), 631-651. DOI=10.1002/spe.584
http://dx.doi.org/10.1002/spe.584

[10] Kavulya, S., Tan, J., Gandhi, R., and Narasimhan, P. 2010.
An Analysis of Traces from a Production MapReduce
Cluster. In Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid
Computing (CCGRID '10). IEEE Computer Society,
Washington, DC, USA, 94-103.
DOI=10.1109/CCGRID.2010.112
http://dx.doi.org/10.1109/CCGRID.2010.112

[11] Keahey, K., Tsugawa, M., Matsunaga, A., and Fortes, J.
2009. Sky Computing. IEEE Internet Computing 13, 5
(September 2009), 43-51. DOI=10.1109/MIC.2009.94
http://dx.doi.org/10.1109/MIC.2009.94

[12] Litzkow, M. J., Livny, M., Mutka, M. W. Condor - A Hunter
of Idle Workstations. ICDCS 1988:104-111

[13] Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F.,
Belew, R. K., Goodsell, D. S. and Olson, A. J. (2009),
AutoDock4 and AutoDockTools4: Automated docking with
selective receptor flexibility. Journal of Computational
Chemistry, 30: 2785–2791. doi: 10.1002/jcc.21256

[14] National Biomedical Computation Resource, http://nbcr.net

[15] Qiu, J., Ekanayake, J., Gunarathne, T., Choi, J. Y., Bae, S.
Ruan, Y., Ekanayake, S., Wu, S., Beason, S., Fox, G., Rho,

M., Tang, H., “Data Intensive Computing for
Bioinformatics”, In Data Intensive Distributed Computing,
IGI Publishers, 2010

[16] Staples, G. 2006. TORQUE resource manager. In
Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing (SC '06). ACM, New York, NY, USA,
Article 8. DOI=10.1145/1188455.1188464
http://doi.acm.org/10.1145/1188455.1188464

[17] Teragrid, http://www.teragrid.org

[18] Tsugawa, M., and Fortes, J. A. B. 2006. A virtual network
(ViNe) architecture for grid computing. In Proceedings of the
20th International Conference on Parallel and Distributed
Processing (IPDPS'06). IEEE Computer Society,
Washington, DC, USA, 148-148.

[19] Vaqué, M., Arola, A., Aliagas, C., and Pujadas, G. 2006.
BDT: an easy-to-use front-end application for automation of
massive docking tasks and complex docking strategies with
AutoDock. Bioinformatics 22, 14 (July 2006), 1803-1804.
DOI=10.1093/bioinformatics/btl197
http://dx.doi.org/10.1093/bioinformatics/btl197

[20] Yang, H., Dasdan, A., Hsiao, R., and Parker, D. S. 2007.
Map-Reduce-Merge: Simplified Relational Data Processing
on Large Clusters. In Proceedings of the 2007 ACM
SIGMOD International Conference on Management of Data
(SIGMOD '07). ACM, New York, NY, USA, 1029-1040.
DOI=10.1145/1247480.1247602
http://doi.acm.org/10.1145/1247480.1247602

[21] Zaharia, M., Borthakur, D, Sarma, J. S., Elmeleegy, K.,
Shenker, S., and Stoica, I. Job Scheduling for Multi-User
MapReduce Clusters, Technical Report UCB/EECS-2009-
55, University of California at Berkeley, April 2009.

[22] Zhang, C., De Sterck, H., "CloudBATCH: A Batch Job
Queuing System on Clouds with Hadoop and HBase," Cloud
Computing Technology and Science, IEEE International
Conference on, pp. 368-375, 2010 IEEE Second
International Conference on Cloud Computing Technology
and Science, 2010

[23] Zhou, S, Zheng, X., Wang, J., and Delisle, P. 1993. Utopia: a
load sharing facility for large, heterogeneous distributed
computer systems. Softw. Pract. Exper. 23, 12 (December
1993), 1305-1336. DOI=10.1002/spe.4380231203
http://dx.doi.org/10.1002/spe.4380231203

