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Abstract—We present a Hierarchical MapReduce framework
that gathers computation resources from different clusters and
runs MapReduce jobs across them. The applications imple-
mented in this framework adopt the Map-Reduce-GlobalReduce
model where computations are expressed as three functions:
Map, Reduce, and GlobalReduce. Two scheduling algorithms
are introduced: Compute Capacity Aware Scheduling for
compute-intensive jobs and Data Location Aware Schedul-
ing for data-intensive jobs. Experimental evaluations using a
molecule binding prediction tool, AutoDock, and grep demon-
strate promising results for our framework.

Keywords-MapReduce; Cross Domain; Multi-Cluster; Data
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I. INTRODUCTION

MapReduce [1] is a programming model well suited to

processing large datasets using high-throughput parallelism

running on a large number of compute resources. While

it has proven useful on data-intensive high throughput ap-

plications, conventional MapReduce model limits itself to

scheduling jobs within a single cluster. As job sizes become

larger, single-cluster solutions grow increasingly inadequate.

A researcher at a research institution typically has access

to several research clusters, each of which consists of a

small number of nodes. The nodes in one cluster may

be very different from those in another cluster in terms

of CPU frequency, number of cores, cache size, memory

size, network bandwidth and storage capacity. For example,

researchers at Indiana University have access to IU Quarry,

FutureGrid [2], and Teragrid [3] clusters but each cluster

imposes a limit on the maximum number of nodes a user

can allocate at any one time. If these isolated clusters can

work together, they collectively become more powerful.

Additionally, the input dataset could be very large and

widely distributed across multiple clusters. There are large

differences in I/O speeds from local disk storage to wide

area networks. Feeding a large dataset repeatedly to re-

mote computing resources becomes the bottleneck. When

mapping such data-intensive tasks to compute resources,

scheduling mechanisms need not only take into account

the execution time of the tasks, but also the overheads of

staging the dataset. To scale up such tasks, there are tradeoffs

to be made, such as determining whether to bring data to

computation or bring computation to data, or even regenerate

data on-the-fly.

Users cannot directly deploy a MapReduce framework

such as Hadoop on top of multiple clusters to form a single

larger MapReduce cluster because the internal nodes of a

cluster are not directly reachable from outside. However,

MapReduce requires the master node to directly communi-

cate with any slave node, which is also one of the reasons

why MapReduce frameworks are usually deployed within

a single cluster. Therefore, in our research we strive to

make multiple clusters act collaboratively as though they

were a single cluster to improve the efficiency of running

MapReduce.

Another contribution of research is to schedule and co-

ordinate MapReduce jobs efficiently among local clusters,

and this is closely tied to how the datasets are partitioned.

This is particularly true for data-intensive tasks requiring

access to large datasets stored across multiple locations and

geographies. The input dataset could be distributed among

clusters, or even across data centers where the data load is

equivalent to or larger than the computational load.

The remainder of the paper is organized as follows.

Section II presents the hierarchical map reduce. Section III

demonstrates the feasibility of our solution by applying

compute-intensive and data-intensive applications. Section

IV lists related work. The conclusion and future work are

given in Section V.

II. HIERARCHICAL MAPREDUCE

There are two possible approaches to addressing the

challenge of internal nodes not being reachable from outside.

The first is to unify the underlying physical clusters as a

single virtual cluster by adding a special infrastructure layer,

and run MapReduce on top of this virtual cluster. However,

data shuffling across wide area network is too expensive

under certain common conditions. The other is to make the

MapReduce framework work directly with multiple clusters

without additional special infrastructure layers. We proposed

in [4] a solution which takes the second approach, and

gathers isolated cluster resources into a more capable one

for running MapReduce jobs.

A. Hierarchical MapReduce (HMR) Architecture

The HMR framework consists of two layers. As is shown

in Figure 1, at the top layer is a Global Controller, which

consists of a Job Scheduler, a Data Manager, and a Workload



Figure 1. Hierarchical MapReduce Architecture

Collector; the bottom layer consists of multiple clusters

where the distributed local MapReduce jobs are run. Each

cluster has a MapReduce master node with a HMR daemon,

which is responsible for reporting workloads and managing

local MapReduce jobs. The compute nodes inside each of

the clusters are not accessible from the outside.

When a MapReduce job is submitted to a HMR frame-

work, it is split into a number of sub-jobs and assigned each

to a local cluster by the Job Scheduler at the Global Con-

troller level. A scheduling decision will be made based on

several factors, including but not limit to the characteristics

of the input dataset, the current workload reported by the

workload reporter from each local cluster, as well as the

capability of individual nodes making up each cluster. The

Global Controller also partitions the input data in proportion

to the sub-job sizes if the input data has not been deployed

before-hand. The Data Manager transfers the user supplied

MapReduce jar and job configuration files with the input

data partitions to the local clusters. Once the data and job

executable are ready, the job manager of the local cluster’s

HMR daemon starts the local MapReduce sub-job. When

the local sub-jobs are finished on a local cluster, the clusters

will transfer the output back to one of the local clusters

for global reduction, if is required by the application. Upon

finishing all the local MapReduce sub-jobs, a global Reduce
function will be invoked to perform the final reduction task,

unless the original job is map-only.

Since data transfer is very expensive, we recommend

that users use the global controller to transfer data only

when the size of the input data is small and the time spent

for transferring the data is insignificant compared to the

computation time. For large datasets, it is more efficient to

deploy the datasets before-hand, so that the jobs get the

full benefit of parallelization and the overall time does not

become dominated by data transfer.

Table I
INPUT AND OUTPUT TYPES OF MAP, REDUCE, AND GLOBAL REDUCE

FUNCTIONS.

Function Name Input Output

Map (ki, vi) (km, vm)

Reduce (km, [vm1 , ..., vmn ]) (kr, vr)

GlobalReduce (kr, [vr1 , ..., v
r
n]) (ko, vo)

B. Programming Model

The programming model of the HMR is the Map-Reduce-
GlobalReduce model where computations are expressed as

three functions: Map, Reduce, and GlobalReduce. We

use the term “GlobalReduce” to distinguish it from the

“local” Reduce which happens right after Map execution,

but conceptually as well as syntactically, a GlobalReduce
is just another conventional Reduce function. The Map,

just as with a conventional Map, takes an input data split

and produces an intermediate key/value pair; likewise, the

Reduce, just as with a conventional Reduce, takes an

intermediate input key and a set of corresponding values

produced by the Map task, and outputs a different set of

key/value pairs. Both the Map and the Reduce functions

are executed on local clusters first. The GlobalReduce is

executed on one of the local clusters using the output from

all the local clusters. Table I lists these functions and the

corresponding input and output data types.

Figure 2 uses a tree-like structure to show the data flow

across Map, Reduce, and GlobalReduce functions. The

leaf rectangle nodes with dotted line represent MapReduce

clusters that perform the Map and Reduce functions, and

the root rectangle node with dotted line is a MapReduce

cluster on which the GlobalReduce takes place. The arrows

indicate the direction in which the data sets (key/value pairs)

flow. When a job is submitted into the system, the input

dataset is partitioned into splits. The splits then are passed

to the leaf nodes where Map tasks are launched. Each Map
task consumes an input key/value pair and produces a set of

intermediate key/value pairs. The set of intermediate pairs

then are passed to the Reduce tasks, which are also launched

at the same cluster as the Map tasks. Each Reduce task

consumes an intermediate key with a set of corresponding

values, and produces a different set of key/value pairs as

output. All the local Reduce results are sent to one local

cluster to perform GlobalReduce task. Each GlobalReduce
takes in a key and a set of corresponding values that

were originally produced from the local Reduce tasks, and

computes and produces the final output.

Theoretically, the model can be extended to additional

layers, i.e., the tree structure in Figure 2 can have more depth

by adding more intermediate Reduce steps that partially

reduce the output from previous layer of Reduce functions.

Following the classification of Elteir et al. [5] MapReduce

jobs can be classified into recursively reducible jobs and



Figure 2. HMR Data Flow

non-recursively jobs. Recursively reducible jobs have no

inherent synchronization requirement between the Map and

Reduce phases. Such jobs can be processed in a hierarchical

reduction or incremental reduction. This is a simplified

case in our HMR system where the Reduce function and

GlobalReduce function are one-in-the-same. Such jobs can

be further optimized using a combiner function between

local Map and Reduce functions.

C. Job Scheduling

We propose two scheduling algorithms. The first is the

Compute Capacity Aware Scheduling (CCAS) algorithm,

which aims to optimize data-intensive jobs. The second is

a data location aware scheduling algorithm, Data Location

Aware Scheduling (DLAS), where a candidate cluster for

processing a data partition requires the physical residence

of the data partition. Each are introduced here.

1) Compute Capacity Aware Scheduling(CCAS):
The CCAS aims to optimize compute-intensive jobs. A

dataset consists of multiple data partitions that are distributed

among multiple clusters. We make the assumption that the

input data of each map tasks are equal in size and the map

tasks take approximately the same amount of time to run.

Consider running a MapReduce job on n clusters. Let

MapSlotsi be the maximum number of Map tasks that

can be run concurrently on Clusteri; MapOccupiedi be

the number of Map tasks currently running on Clusteri;
FreeMapi be the number of available slot to run Map
tasks on Clusteri; NumCorei be the total number of CPU

Cores on Clusteri, where i ∈ {1, . . . , n}. And ρi defines

how many Map tasks a user assigns to each core, that is,

MapSlotsi = ρi ×NumCorei (1)

To simplify the algorithm, we set ρi = 1 in the local

MapReduce clusters for compute-intensive jobs, so that

FreeMapi = MapSlotsi −MapOccupiedi (2)

For simplicity, let

γi = FreeMapi (3)

The weight of each sub-job can be calculated from (4) where

the factor θi is the computing power of each cluster, e.g., the

CPU speed, memory size, storage capacity, etc. The actual

θi varies depending on the characteristics of the jobs, i.e.,

whether they are computation intensive or I/O intensive

Wi =
γi × θi∑n
i=1 γi × θi

(4)

Let JobMapx be the total number of Map tasks for a

particular job x, which can be calculated from the number

of keys in the input to the Map tasks, and JobMapix be the

number of Map tasks to be scheduled to Clusteri for job

x, so that

JobMapix = Wi × JobMapx (5)

After partitioning the MapReduce job to Sub-MapReduce

jobs using equation (5), we number the data items of the

datasets and move the data items accordingly.

2) Data Location Aware Scheduling(DLAS):
The data location aware scheduling algorithm, Data Lo-

cation Aware Scheduling (DLAS), requires of a candidate

cluster the physical residence of the data partition. Typically,

with the assistance of a global file system, data partitions can

be replicated among clusters. If more than one candidate

cluster is found, the scheduling algorithm maps that data

partition to one of the candidate clusters in a way that

all selected clusters have similar ratio of data over cluster

compute capacity, or called, balanced processing time.

Consider a dataset DS = {D1, . . . , Dm} which has been

partitioned to m partitions, residing on n clusters. Each

partition has been replicated among Nj clusters, with the

data size defined as SZDj
, where 1 ≤ Nj ≤ n and

j ∈ {1, . . . ,m}. A scheduling plan k contains a list of subset

of dataset DS. Let SDSk
i be a subset of DS for Clusteri,

and

∃k((∪n
i=1SDSk

i = DS) ∧ (∩n
i=1SDSk

i = ∅)) (6)

The compute capacity of Clusteri is defined as Wi , where

i ∈ {1, . . . , n}, so that in Clusteri, the ratio of data

partitions collection over compute capacity in scheduling

plan k is defined as Rk
i , and

Rk
i =

∑
x∈SDSk

i
SZx

Wi
(7)

And the total data processing time under a scheduling plan

k is defined as,

Tk = ω(maxi∈{1,...,n}Rk
i ) (8)



1. Sort the data partitions Dj in decreasing order of size

2. For i = 1 to n do

2.1. UASSi = Sum the size of all unassigned data

partitions which exists in Clusteri
2.2. Expi = Expected load of data partitions collec-

tion size in Clusteri (The distribution of Expi
among all clusters is based on Wi, derived from

equation 7)

3. For j = 1 to m do

3.1. Sort candidate clusters (which contains replica of

Dj) in increasing order of UASS values.

3.2. Assign data partition Dj to the cluster with

smallest UASS value, if current load on that

cluster plus SZDj is less than Exp value; other-

wise, assign data partition Dj to the cluster with

least current load.

3.3. Update load of the cluster that receives data

partition Dj

3.4. Update UASSi, if Clusteri Contains Dj

Figure 3. Data Location Aware Scheduling Algorithm

in which ω is a constant value. The following equation finds

minimized total processing time in all K scheduling plans.

Tmin = mink∈KTk (9)

If Tmin = Tk, then plan k is the optimal plan. To make

the workload balanced among these clusters, Rk
i values in

plan k should be as close as possible. Therefore, smaller

granularity of data partition leads to better chance of load

balance.

The DLAS algorithm in Figure 3 is an approximation

algorithm towards finding an optimal plan. In the current

version of DLAS, a few assumptions are made, 1) the data

partitions are relatively small in comparison to the whole

dataset so that no further partitions to be made; 2) data

replicas are randomly replaced among clusters; 3) no data

transfer activities are allowed.

III. USE CASES AND PRELIMINARY EXPERIMENTS

A. Compute-intensive applications

We apply the Hierarchical MapReduce programming

model to the AutoDock [6] application. An AutoDock

virtual screening consists of multiple AutoDock processes

which are data independent. The paradigm of map-reduce

and extensions to hierarchical map reduce is a good fit

for AutoDock virtual screening, where Map, Reduce, and

GlobalReduce functions are implemented as follows:

1) The Map function takes a ligand to run the AutoDock

binary executable against a shared receptor, and sum-

marize binary executable output to record lowest en-

ergy value with a global intermediate key.

2) The Reduce function takes all the energy values

corresponding to the global intermediate key, sorts the

values by the energy from low to high, and records the

sorted results to a file with the global intermediate key.

3) The GlobalReduce function takes all the values of

the global intermediate key from the output of local

Reduce functions, sorts and combines them into a

single file sort by increasing order of energy values.

An evaluation of AutoDock HMR appears in Luo et al.

2011 [4]. It was carried out on three clusters — Hotel

and Alamo from the FutureGrid testbed and Quarry at

Indiana University. 21 nodes were allocated from each

cluster, within which one node is a dedicated master node

(HDFS [7] namenode and MapReduce jobtracker) and other

nodes which are data nodes and tasktrackers. The version

of AutoDock used, 4.2, is the latest stable version at the

time of writing. During the experiments, 6,000 ligands and

1 receptor are used. One of the configuration parameters that

dominate the docking execution time and result accuracy is

ga num evals — number of evaluations. Based on prior

experiences, the ga num evals is typically set in a range

of 2, 500, 000 to 5, 000, 000. We configure it to 2, 500, 000.

Considering that AutoDock is a CPU-intensive application,

we set ρi = 1 per Section C.1) so that the maximum number

of map tasks on each node is equal to the number of cores

on the node. The CPU frequency was considered as major

factor to set θi . So we set θ1 = 2.93 for Hotel, θ2 = 2.67
for Alamo, and θ3 = 2 for Quarry. We have calculated

γ1 = γ2 = γ3 = 160, given no MapReduce jobs are

running beforehand. Thus, the weights are W1 = 0.3860,

W2 = 0.3505, and W3 = 0.2635 for Hotel, Alamo, and

Quarry respectively. The dataset is also partitioned according

to the new weight, which is 2, 316 Map tasks on Hotel,

2, 103 on Alamo, and 1, 581 on Quarry.

The result shows that the workloads are well balanced

among these clusters (around 6000 seconds execution time

in each cluster) and the total execution time is kept in

minimum.

B. Data-intensive applications

For data-intensive applications, instead of transferring

data explicitly from site to site, we explore using a shared

file system called Gfarm [8] to share data sets among the

Global Controller and local Hadoop clusters. Gfarm is a

file-based distributed file system that federates local file

systems on data nodes to maximize distributed file I/O

bandwidth. A file in the Gfarm has multiple replicas stored

in different data nodes. We wrote a MapReduce version of

grep as a test case. The Map function captures the matching

lines of input regular expressions. The Reduce function

collects all the matching lines from local Map output. The

GlobalReduce function collects all the output from local

Reduce and combines them into a single output file. The



total execution time varies with different file distribution and

different regular expression input.

Two virtual clusters (pragma-f0 and pragma-f1) were

provisioned on the PRAGMA testbed [9]. Each cluster

contains a virtual front node and 3 virtual compute nodes.

All the virtual nodes are configured with 1 core of CPU,

1GB memory, and 80GB storage. Both of the virtual clusters

are deployed as local MapReduce clusters and one of the

virtual clusters (pragma-f0) is deployed as Global Controller.

A Gfarm Metadata server is deployed also on pragma-f0

cluster. Both pragma-f0 and pragma-f1 are also configured

as Gfarm data nodes), and Gfarm client. In our preliminary

test, the input dataset contains 10 files. We generate each

file with the size of 200MB, 400MB, 600MB, 800MB, 1GB

respectively. These 10 files were evenly distributed between

the two clusters with no replicas. The total execution time

increases linearly from 311 seconds to 608 seconds when

the size of input increases.

IV. RELATED WORK

Elteir et al. [5] classifies MapReduce jobs into recursively

reducible jobs and non-recursively jobs. Recursively re-

ducible MapReduce has no inherent synchronization require-

ment between the map and reduce phases. Such jobs can be

processed in hierarchical reduction or incremental reduction.

However, their solution only support recursively reducible

jobs and is restricted within a single cluster domain. The

Map-Reduce-Merge [10] extends the MapReduce model

with an additional Merge phase that merges output data from

reduce modules. It aims to accomplish relational algebra

operations over distributed heterogeneous datasets. However,

it does not address scheduling issues and is not for multi-

cluster environment.

Cardosa et al. [11], published the same day as our

HMR paper, discusses problems running Hadoop jobs when

data and computing plarform are widely distributed. They

introduce distributed MapReduce which is similar to our

solution. But the solution lacks a programming model and

scheduling algorithms to support it. Sky Computing [12]

provides end users a virtual cluster interconnected with

ViNe [13] across different domains. It brings convenience by

hiding the underlying physical clusters details. However, this

transparency may cause an imbalanced workload where a job

is dispatched over heterogeneous resources among different

physical domains.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper we present a hierarchical MapReduce frame-

work that utilizes computation resources from multiple clus-

ters simultaneously to run MapReduce job across them.

Two scheduling algorithms are proposed and preliminarily

evaluated using a high throughput application, AutoDock,

and a simple Grep. There are several areas for improvement

and extension that we will address in the remainder of the

PhD work.

Scheduling Algorithms and Programming Model
The next step is to evaluate scheduling algorithms thor-

oughly under different conditions. The current version of

DLAS scheduling algorithm does not consider data trans-

ferring among clusters, so does not perform well under

conditions of an imbalanced replica distribution scenario.

Moreover, if data partitions are relatively large in proportion

of the whole dataset, DLAS fails to balance the workload

without further partitioning the existing data partitions. Fur-

thermore, CCAS and DLAS are static algorithms limited to

prior knowledge without considering runtime change. To this

end, possible improvements of scheduling algorithms should

be made to address these issues.

The iterative MapReduce, which can be considered as a

sub-class of MapReduce model, has yet to be investigated.

Applications
The AutoDock application and grep application provide

useful initial experience to evaluate the HMR model. These

two applications also need a more complete evaluation under

the improvements of CCAS and DLAS algorithms. We are

also investigating the suitability of HMR applied to ensemble

runs. SLOSH is a NOAA developed storm surge model [14]

that estimate storm surge heights resulting from historical,

hypothetical, or predicted hurricanes by taking into account

the atmospheric pressure, size, forward speed, and track data.

The input of each SLOSH runs are separated from each other

and the processes are embarrassingly parallel. A SLOSH job

takes as many as 14,000 input data files, which requires

14,000 SLOSH runs to process. Researchers in our lab

secured 120 worker roles from Windows Azure to process

this job but so far only tested for 1,000 SLOSH runs. It is

unlikely for us to allocate 10 times more worker roles due

to financial and other considerations. HMR could potentially

distribute these 14,000 instances to other resources such as

PRAGMA Cloud, to meet the execution time constrains.

Hathi Trust Research Center (HTRC) [15] enables com-

putational access for nonprofit and educational users to pub-

lished works in the public domain. Ideally, HTRC collects

all books from Hathi Trust Digital Library [16], which at

the time of this writing, contains over 10 million volumes

and 27% of them are in the public domain. Indexing these

volumes requires huge amount of storage and large compu-

tation power that it could not being done within a single

domain. Hierarchical Indexing can address these issues of

time consuming index builds and can reduce search time as

well.
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